
Instructional workshop on OpenFOAM
programming

LECTURE # 8

Pavanakumar Mohanamuraly

April 30, 2014

Outline

Compressible Euler Solver

Parallelization in OpenFOAM

OpenFOAM Parallelization API

A tour of the example code

Parallel Euler Solver

The Euler’s Equation

∂

∂t

∫
V

QdV +

∫
S

F · n dS = 0 (1)

The vectors Q and F · n are defined as,

Q =

 ρ
ρvi
ρe

 F · n =

 ρvn
ρvivn + pni

(ρe + p)vn

 (2)

where, ρ, p and v are the fluid density, pressure and velocity
respectively. The internal energy e per unit mass of the fluid is
defines as,

ρe =
p

γ − 1
+

1

2
ρvivi (3)

The fluid pressure p, density ρ and temperature T are related by
the prefect gas relation,

p = ρRT (4)

Spatial and Temporal discretization

i

i+1/2i-1/2

For 3d meshes we get,

Qn+1
i = Qn

i +
∆t

Vi

∑
j

(
F n
j Sj

)
(5)

I Qi is the cell average value Qi = 1
Vi

∫
Vi

QdV

I F n
j is approximation to average flux along face j

F n
j = F

(
Qn

Lj
,Qn

Rj

)
(6)

I QLj/Rj
= left/right states of face j

Flux function F

I Run-time selectable using function pointers

I Selected using dictionary keyword fluxScheme in
system/fvSchemes

I Implemented Roe approximate flux function

F̂roe(QL,QR ,S) =
1

2

[
F̂n(QL,S) + F̂n(QR ,S)− ‖Ã(QL,QR , S)‖(QR − QL)

]
(7)

where, Ã is the Roe average matrix

I Also has implementation of Van Leer flux splitting

Local time stepping

∆t
vcell

term is replaced by the CFL number (Nc) and local maximum
eigenvalue

∆t

Vi
=

Nc

Nf∑
j=1

(|Un|+ a)j Sj

(8)

where, Nf is the total number of faces in a cell and Sj is the face
area of the j th face.

Boundary Conditions - Slip wall

I Physically imposes a zero mass flux crossing the rigid wall

I Written mathematically as un = 0

I Flux formulation for the wall boundary face becomes

Fwall
n =

ρun

ρuun + pnx

ρvun + pny

ρwun + pnz

(e + p)un

 =

0

pnx

pny

pnz

0

 (9)

I Pressure at wall face computed by extrapolation from interior

I Use face-owner cell centroid value extrapolation

Boundary Conditions - Supersonic Inflow/Outflow

I No influence of the downwind disturbances to upwind

I Safe to fix inlet face values to inlet conditions

I For outflow use extrapolated interior solution (owner cell
value) to boundary face

Implementation details - Flux divergence
/// Internal faces get face flux from L and R cells
forAll(mesh.owner() , iface) {
/// Get the left and right cell index
const label& leftCell = mesh.owner()[iface];
const label& rightCell = mesh.neighbour()[iface];
/// Approximate Riemann solver at interface
scalar lambda = (*fluxSolver)
(
&rho[leftCell], &U[leftCell], &p[leftCell], // L
&rho[rightCell], &U[rightCell], &p[rightCell], // R
&massFlux[iface], &momFlux[iface], &energyFlux[iface],
&nf[iface] // Unit normal vector

);
/// Multiply with face area to get face flux
massFlux[iface] *= mesh.magSf()[iface];
momFlux[iface] *= mesh.magSf()[iface];
energyFlux[iface] *= mesh.magSf()[iface];
localDt[leftCell] += lambda * mesh.magSf()[iface];
localDt[rightCell] += lambda * mesh.magSf()[iface];

}

Implement Boundary Conditions

I Loop over all boundary patches

forAll (mesh.boundaryMesh() , ipatch) {

I Access the physicalType of the patch

word BCTypePhysical =
mesh.boundaryMesh().physicalTypes()[ipatch];

I Access the geometric type of the patch

word BCType = mesh.boundaryMesh().types()[ipatch];

I Access the patch names

word BCName = mesh.boundaryMesh().names()[ipatch];

Implement Boundary Conditions

I Access the owner-cell ids of patch

const UList<label> &bfaceCells =
mesh.boundaryMesh()[ipatch].faceCells();

I Note that alternatively you can use patchInternalField to
access owner-cell values of patch faces

I Try it yourself !

Implement Boundary Conditions - Slip wall

if(BCTypePhysical == "slip" ||
BCTypePhysical == "symmetry") {

forAll(bfaceCells , iface) {
/// Extrapolate wall pressure
scalar p_e = p[bfaceCells[iface]];
vector normal = nf.boundaryField()[ipatch][iface];
scalar face_area =

mesh.magSf().boundaryField()[ipatch][iface];
scalar lambda = std::fabs
(

U[bfaceCells[iface]] & normal) +
std::sqrt (gama * p_e / rho[bfaceCells[iface]]

);
momResidue[bfaceCells[iface]] += p_e * normal *

face_area;
localDt[bfaceCells[iface]] += lambda * face_area;

}
}

Implement Boundary Conditions - Extrapolated outflow

if(BCTypePhysical == "extrapolatedOutflow") {
forAll(bfaceCells , iface) {
label myCell = bfaceCells[iface];
vector normal = nf.boundaryField()[ipatch][iface];
scalar face_area
(
mesh.magSf().boundaryField()[ipatch][iface]

);
/// Use adjacent cell center value of face
// to get flux (zeroth order)
scalar lambda = normalFlux(...); // Normal face flux
massResidue[myCell] += bflux[0] * face_area;
momResidue[myCell][0] += bflux[1] * face_area;
momResidue[myCell][1] += bflux[2] * face_area;
momResidue[myCell][2] += bflux[3] * face_area;
energyResidue[myCell] += bflux[4] * face_area;
localDt[myCell] += lambda * face_area;

}
}

Implement Boundary Conditions - Supersonic inlet

if(BCTypePhysical == "supersonicInlet") {
forAll(bfaceCells , iface) {
label myCell = bfaceCells[iface];
vector normal = nf.boundaryField()[ipatch][iface];
scalar face_area
(

mesh.magSf().boundaryField()[ipatch][iface];
);
/// Use free-stream values to calculate face flux
scalar lambda = normalFlux(&rho_inf , &u_inf , &p_inf

, &normal , bflux);
massResidue[myCell] += bflux[0] * face_area;
momResidue[myCell][0] += bflux[1] * face_area;
momResidue[myCell][1] += bflux[2] * face_area;
momResidue[myCell][2] += bflux[3] * face_area;
energyResidue[myCell] += bflux[4] * face_area;
localDt[myCell] += lambda * face_area;

}
}

Hands on - Supersonic flow over wedge

I Compile the solver

I Setup inputs for the wedge case

I Run the example wedge case

I Plot the results

The unstructured mesh

Cell
Node
Face

The dual graph

After graph partitioning

Structured Grid Decomposition

Structured Grid Decomposition with One Ghost Cell Padding (CC)

Graph based Unstructured Grid Decomposition

Node Based Unstructured Grid Decomposition

Parallelization in OpenFOAM (from Jasak’s slides)

I Parallel communications are wrapped in Pstream library to
isolate communication details from library use

I Discretization uses the domain decomposition with zero halo
layer approach

I Parallel updates are a special case of coupled discretization
and linear algebra functionality

I processorFvPatch class for coupled discretization updates
I processorLduInterface and field for linear algebra updates

Parallelization in OpenFOAM (from Jasak’s slides)

Parallel Algorithms

Zero Halo Layer Approach in Discretisation
• Traditionally, FVM parallelisation uses the halo layer approach: data for cells next

to a processor boundary is duplicated. Halo layer covers all processor boundaries
and is explicitly updated through parallel communications calls: prescribed
communications pattern, at pre-defined points

• OpenFOAM operates in zero halo layer approach: flexibility in communication
pattern, separate setup for FVM and FEM solvers

• FVM and FEM operations “look parallel” without data dependency: perfect scaling

decomposition

Global domain Subdomain 1

Subdomain 3 Subdomain 4

Subdomain 2

Parallelisation and Scalability in OpenFOAM – p. 6

Some Useful API in Pstream library

Pstream::parRun()

Check if -parallel is defined in command line

if(!Pstream::parRun()) {
Info << "Error: The program should be run under mpirun

\n";
}

Pstream::myProcNo() and Pstream::masterNo()

Processor (and Master) Rank in MPI Communicator

Info << "My rank in MPI Communicator is "
<< Pstream::myProcNo() << " and master rank "
<< Pstream::masterNo() << "\n";

Parallel Streams - C++ i/ostreams

Perr

Error stream

Perr << "Some error occurred in parallel job \n";

Parallel Streams - C++ i/ostreams

OPstream/IPstream

Used to send/receive data to adjacent processor

vector data(0, 1, 2);
OPstream toMaster(Pstream::scheduled, Pstream::masterNo

());
toMaster << data;
...
IPstream fromMaster(Pstream::scheduled, Pstream::

masterNo());
fromMaster >> data;
/* Types of schedules **
** Pstream::scheduled **
** Pstream::blocking **
** Pstream::nonBlocking */

Hands on - First parallel code

I Check if parallel environment is defined using Pstream

I If it is indeed parallel run print the processor rank

Creating the decomposition in OF

decomposePar

I Tool decomposes mesh into N partitions.

I Create the file “decomposeParDict” in the case “system”
folder.

FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object decomposeParDict;

}
numberOfSubdomains N;
method metis;

“processor” directories

case folder

0

constant

system

processor0

0

constant

system

...

processorN-1

I “processorX/constant”
folder has the “boundary”
file

I Additional boundary
patches are found with the
type “processor”

I “processor” patch faces
abut with neighbor
decomposition

Hands on - Create Decompositons

I Create the decomposeParDict in case folder of wedge

I Set the number of partitions to 2

I Plot the decomposed mesh

Field Data - Parallel Exchange

I Field variables see the adjacent processor information via
coupled boundary condition

I Coupled boundaries naturally allow non-blocking
parallelization

I Volume field are the logical candidates for parallel exchange of
faces fluxes

Hands on - Simple Parallel Exchange Example

Make rho values in each processor equal to its rank

forAll(rho , icell)
rho[icell] = Pstream::myProcNo();

Loop over all boundary patches and get the type and alias of
boundary cells attached to boundary face

forAll (mesh.boundaryMesh() , ipatch) {
word BCtype = mesh.boundaryMesh().types()[ipatch];
const UList<label> &bfaceCells =

mesh.boundaryMesh()[ipatch].faceCells();

Hands on - Simple Parallel Exchange Example

Now check if boundary patch type is processor

if(BCtype == "processor") {

Verify if the non-blocking receive has been made successfully

rho.correctBoundaryConditions();

Hands on - Simple Parallel Exchange Example

Now get the received field values to variable exchange

scalarField exchange =
rho.boundaryField()[ipatch].

patchNeighbourField();

Assign the boundary cell value to the received value

forAll(bfaceCells , icell) {
rho[bfaceCells[icell]] = exchange[icell];
std::cout << exchange[icell] << "\n";

}

Output X

Y

Z

“processor” BC and Halo

 6

communication between adjacent subdomains. In terms of this data exchange the receive
nodes are updated with the correct values of the corresponding send nodes.

Figure 5. Domain decomposition and coupling in FENFLOSS.

2.5 Frozen rotor approach
To realise the frozen rotor approach the
coupling interface has to allow for non-
matching grids at the boundary between
the stages. The restriction to matching
grids would pose severe problems to the
mesh generation process due to the un-
equal pitch of guide vanes and runner.
Since it is possible in FENFLOSS to
work with embedded locally refined
grids a non-matching interface has been
implemented already. The implemented
algorithm in FENFLOSS is based on

domain decomposition with non-overlapping elements. The method is presented in detail
in [5]. In the following only a brief overview of the procedure is summarised.

Figure 6. Bi-linear interpolation of a restriction node.

pK(i)
y

pK(i)
x

y

x

Transformation

t

s

s

t

K(i)

K(i)

Leading nodes
Restriction node K(i)

Resulting from the non-overlapping approach there are too many degrees of freedom along
the interface. Therefore the interface is divided into leading and restriction nodes. The lat-
ter are eliminated and expressed in terms of the leading nodes by means of so called re-
striction operators. In the special case of matching grids these restriction operators merely
express the equality of the leading and restriction nodes. In the general case of non-
matching grids these restriction operators are derived by bi-linear, respectively tri-linear in
3D space, interpolations. A schematic of the interpolation is shown for the 2D case in
Figure 6. The restriction operators are then expressed in terms of the according shape func-
tions and the local element coordinates s and t, which are obtained iteratively for each re-
striction node. Decomposition into two domains for example leads to the linear equation
system

!
!
!

"

#

$
$
$

%

&
=

!
!
!

"

#

$
$
$

%

&

!!
!
!

"

#

$$
$
$

%

&

00
0

0

2

1

2

1

21

222

111

b
b

!
x
x

BB
BA
BA

T

T

 (4)

Send nodes domain 2Core nodes domain 1

Send nodes domain 1
Communication

Core nodes domain 2
Re

ce
ive

 n
od

es

Communication

Overlapping elements

Figure: Halo/Ghost nodes in domain decomposition

“processor” BC and Halo

I OpenFOAM does not create the extra cell padding
(Halo/Ghost)

I Reference to immediate cell quantities to “processor”
boundary faces stored

I Quantities/Fields are imported during computation at
“processor” boundary

I But import can happen only if export is posted ??

OF “processor” boundary - type and physicalType
...
7
(

inlet
{

type patch;
physicalType supersonicInlet;
nFaces 0;
startFace 1889;

}
...
...
procBoundary0to1
{

type processor;
nFaces 24;
startFace 3967;
myProcNo 0;
neighbProcNo 1;

}

Non-blocking communication and “runTime” object

/// Time step loop
while(runTime.loop()) {
...
...
runTime.write();

}

I For every iteration of the runTime.loop() non-blocking
export/import is initiated

I During application of “processor” BC the export/import is
confirmed using blocking call

I This essentially forms the Zero-Halo implementation in OF

I Computation and communication happen simultaneously -
latency hiding

The key data-structure and functions

Communication - blocking wait on the send/recv call

rho.correctBoundaryConditions();
U.correctBoundaryConditions();
p.correctBoundaryConditions();

Access Ghost/Halo data

scalarField rhoGhost = rho.boundaryField()[ipatch].
patchNeighbourField();

vectorField UGhost = U.boundaryField()[ipatch].
patchNeighbourField();

scalarField pGhost = p.boundaryField()[ipatch].
patchNeighbourField();

Putting it all together

forAll(bfaceCells , iface) {
label leftCell = bfaceCells[iface];
label rightCell = iface;
vector normal = nf.boundaryField()[ipatch][iface];
scalar face_area =

mesh.magSf().boundaryField()[ipatch][iface];
// Approximate Riemann solver at interface
(*fluxSolver)(&rho[leftCell] , &U[leftCell] ,
&p[leftCell] , &rhoGhost[rightCell] ,
&UGhost[rightCell] , &pGhost[rightCell] ,
&tempRhoRes , &tempURes , &tempPRes , &normal);

// Multiply with face area to get face flux
massResidue[leftCell] += tempRhoRes * face_area;
momResidue[leftCell] += tempURes * face_area;
energyResidue[leftCell] += tempPRes * face_area;

}

	Compressible Euler Solver
	Parallelization in OpenFOAM
	OpenFOAM Parallelization API
	A tour of the example code
	Parallel Euler Solver

