
Instructional workshop on OpenFOAM
programming

LECTURE # 1

Pavanakumar Mohanamuraly

April 16, 2014

Outline

Recap of day 1

OpenFOAM mesh file structure

Finite volume mesh - fvMesh

Introduction to Field variables

OpenFOAM classes discussed so far

I Primitive types

I Dimensioned types

I Info stream output

I argList Command-line parsing

I Time object

I IOdictionary Input file parsing

Clarifications from yesterday

I Foam::MUST READ reads only once during construction

I Only OpenFOAM-2.x version supports
Foam::MUST READ IF MODIFIED

I Foam::AUTO WRITE is used to enable the write trigger for
IOobject

OpenFOAM source file structure - story so-far

Example: solver.cpp

#include "fvCFD.H"

int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"

/// Create mesh and fields
/// ...

while(runTime.loop()) {
Info << "Time : " << runTime.timeName() << "\n";
/// ... solver stuff
runTime.write(); /// The write trigger

}

return 0;
}

Behind the .H scene

Example: solver.cpp

/// #include "setRootCase.H"
Foam::argList args(argc, argv);
if (!args.checkRootCase()) {
Foam::FatalError.exit();

}

/// #include "createTime.H"
Foam::Time runTime
(
Foam::Time::controlDictName,
args.rootPath(),
args.caseName()

);

OpenFOAM classes - IOList for list file I/O

I Similar to IOdictionary
I Does not use keyword → value style parsing
I Array with I/O capability

I Extensively used by mesh object

labelIOList some = labelIOList
(
IOobject
(

"some",
"",
runTime,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false /// Does not register with objectRegistry

)
);

OpenFOAM classes - IOList for list file I/O

Input file format

FoamFile
{

version 2.0;
format ascii;
class labelList;
location "";
object some;

}

4
(
11
12
13
14
)

Hands on

I Create a labelListIO object

I Create a sample input ListIO file

I Read the file and print the read list

Warm up complete

Hands on - Mesh conversion and setup

I Get a copy of the fluent mesh file

I Create a new case folder and controlDict

I Convert mesh using fluentMeshToFoam

I Remove unwanted files

polyMesh database

I constant/polyMesh
I points
I faces
I owner
I neighbour
I boundary

I File format is face-based with polyhedral cell support

I Calculation of volume, area, centroid, etc, performed using
just face information

I FOAM obtains all other connectivity information using this
data alone

faces file

I Contains the list of node index forming faces

I Nodes ordering consistent with owner (left) and neighbor
(right) cell

I faces segregated contiguously according to type

faces_

0

nInternalFaces +
nP1 - 1

nInternalFaces - 1 nInternalFaces +
nP1 + nP2 - 1patches

P1
P2

faceCount

nP1
nP2

owner/neighbour file

Left Cell (Owner Cell) The cell attached to a face such that the
normal is pointing away from that cell.

Right Cell (Neighbour Cell) The cell attached to a face such that
the normal is towards (inward) that cell.

owner/neighbour file

I The owner cell of all internal and patch faces are found in
owner file

I The neighbour cell of all internal faces are found in neighbour
file

I Remember that a boundary (patch) face will have only owner
and no neighbour cell

boundary file

faces_

0

nInternalFaces +
nP1 - 1

nInternalFaces - 1 nInternalFaces +
nP1 + nP2 - 1patches

P1
P2

faceCount

nP1
nP2

I boundary contains the patch boundaries of the mesh
I Each patch has the following attributes set

I patch name
I type - patch type
I nFaces - Number of faces forming the patch
I startFace - The starting index of the face

OpenFOAM basic patch types 1

1source: http://openfoam.org/docs/user/boundaries.php

http://openfoam.org/docs/user/boundaries.php

Creating 2d and 1d meshes using empty patch

Figure : Sample 2d mesh in FOAM

X

Y

Z

I Extrude 2d grid one cell thick (dz = 1.0)

I Except the red patches make all others empty patches

Creating 2d and 1d meshes using empty patch

Figure : Sample 1d mesh in FOAM

X
Y

Z

I Make dy = 1.0 and dz = 1.0 (one cell thick along y and z)

I Except the red patches all others are made empty patches

Hands on - 2d and 1d mesh

I Use the supplied blockMeshDict and generate the grids

I Visualize the generated mesh

Hands on - 2d mesh

Figure : Sample 1d mesh in FOAM

X
Y

Z

Hands on - 1d mesh

Figure : Sample 1d mesh in FOAM

X Y

Z

finite volume mesh data-structure

I Points → Edges → Faces → Cells

I FV operators require the above topology primitive information
(and dependency)

fvMesh class overview

I polyMesh requires the complete polyMesh data-base for
object construction

I fvSchemes and fvSolution classes requires dictionary files
fvSchemes and fvSolution in the system folder for object
construction

fvSchemes and fvSolution

I fvSchemes is the fundamental class, which registers all finite
volume schemes

I Its constructor requires the scheme definition for the following
operators

I gradSchemes - The gradient scheme
I divSchemes - The divergence scheme
I laplacianSchemes - The laplacian scheme

I fvSolution does not require any solution scheme definition

I But requires the dictionary file to be present while
constructing the object

Minimal fvSchemes

FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object fvSchemes;

}

gradSchemes { default none;}
divSchemes { default none; }
laplacianSchemes { default none;}

Minimal fvSolution

FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object fvSolution;

}

Constructing fvMesh object

fvMesh constructor

Foam::fvMesh mesh
(
Foam::IOobject
(

Foam::fvMesh::defaultRegion,
runTime.timeName(),
runTime,
Foam::IOobject::MUST_READ

)
);

I Simplified mesh creation by including header file
createMesh.H

#include "createMesh.H"

Hands on - Complete fvMesh example

#include "fvCFD.H"

int main(int argc, char *argv[])
{

#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
return 0;

}

I Remember to create fvSchemes and fvSolution files (minimal)

I The createTime.H requires controlDict file

OpenFOAM classes - geometricField variables

I Class ties field to an fvMesh topology (can also be typedef
volField, surfaceField, pointField)

I volField - Volumetric field variable tied to the cell average
value (centroid)

I surfaceField - Field variable tied to faces of the domain
(Left/Right)

I pointField - Nodal field variables tied to mesh nodes/discrete
points(lagrangian)

I Inherits all the operators of its corresponding field type

I Has dimension consistency checking

I Discrete operators are available to calculate gradients,
divergence, etc

Field variables - Primitive operators

Table : Vector/Tensor primitive operations

Operator FOAM notation

Addition a+b
Inner Product a & b
Cross Product a ˆ b
Outer Product a * b

Vector magnitude mag(a)
Transpose A.T()

Determinant det(A)

Useful fields in fvMesh

I mesh.C() - volVectorField storing cell centroids

I mesh.points() - pointField storing mesh nodes

I mesh.V() - volScalarField storing cell volumes

I mesh.Sf() - surfaceVectorField storing face area vector

I mesh.magSf() - surfaceScalarField storing face area magnitude

I mesh.Cf() - surfaceVectorField storing face centroid

Hands on - Create unit face normals

I Re-use the fvMesh example from previous hands-on

I Divide the mesh.Sf() and mesh.magSf() to obtain the unit
normals at each face

I Remember that the resulting unit normal is a
surfaceVectorField

Mesh connectivity information

I mesh.owner()/neighbour() - Access owner/neighbour
information (labelList)

I mesh.pointPoints() - Node-to-node connectivity (labelListList)

I mesh.cellCells() - Cell-to-cell connectivity (labelListList)

I mesh.pointCells() - Node-to-cell connectivity (labelListList)

Looping through connectivity
I FOAM provides convenient way to loop through lists using

forAll macro
I The syntax is as follows

forAll(object, loop_var)
{ /* object[loop_var] ... */ }

I loop var is the loop variable and object is FOAM object

Foam::labelListList pp = mesh.pointPoints();
forAll(pp , i)
{
/// ...
forAll(pp[i] , j)
{

/// p[i][j] ...
}

}

volume fields

I Field variables are mostly tied to the Time object as they vary
with iteration

I Hence FOAM stores the field variables in time folders (0, dt,
2dt, ...)

I A field has the following attributes
I dimesionSet object
I internalField values
I boundaryField value/type

I Each field variables requires field specific boundary condition

I Despite additional patch definition made in polyMesh

I FOAM designed to work for segregated solvers

I The last week of lecture we will discuss coupled solvers

volume field object construction

volScalarField testFun
(
IOobject
(

"testFun",
runTime.timeName(),
mesh, /// Just to get objectRegistry
IOobject::NO_READ, /// Read trigger
IOobject::AUTO_WRITE /// Write trigger

),
mesh, /// The mesh to which testFun is tied
dimensionedScalar("testFun", dimless , 0.0)

);

Writing/Reading fields

I Fields with AUTO WRITE attribute set can be written by
simply invoking runTime.write()

I One can specifically write a particular field by invoking the
write() member function

Hands on - Create 2nd order polynomial field

I Take the dot product of cell centorid to get 2nd order scalar
field

I Write it to file and plot

End of Day 2

	Recap of day 1
	OpenFOAM mesh file structure
	Finite volume mesh - fvMesh
	Introduction to Field variables

